

Field to Market®

The Alliance for Sustainable Agriculture

Meeting the Challenge

Producing enough food, fiber and fuel for more than 9 billion people by 2050, while conserving natural resources has become increasingly complex

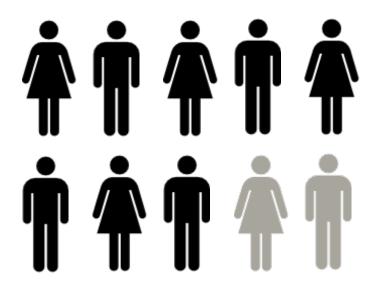
50-70% in middle class

purchasing more protein rich foods

doubling agricultural output

decreased rainfall

extreme weather patterns


70% fresh water used

37% of land use

1/3
edible food
lost or wasted

Americans Seek Sustainable Food Options


More than eight-in-10
Americans consider
sustainability when buying
food and would like to see
more options available that
protect the environment.

Understanding Their Impact

Nearly three-quarters of consumers state they want companies to do a better job explaining how their purchases impact the environment.

Millennials Voting With Their Wallets

Six out of ten millennials (19- to 36-year old consumers) are willing to pay more for environmentally friendly products.

- Reduce GHG emissions across value chain by 25% by 2020
- Sustainably source key agricultural ingredients by 2020
- Expand acreage in Field to Market to 1 Million acres by 2020

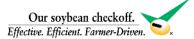
- Sustainably source 100 percent of 10 priority ingredients by 2020
- Expand acreage in Field to Market to 2.5 Million acres by 2015
- Reduce GHG emissions in fertilizer management

- Halve the GHG impact of our products across the lifecycle by 2020
- Source 100% of our agricultural raw materials sustainably by 2020
- Halve the environmental footprint of the making and use of our products as we grow our business by 2020

- Reduce and optimize the resources required to produce that food and driving more transparency into its supply chain
- Reduce fertilizer use on 14 Million acres of U.S. farmland by 2020

Field to Market: The Alliance for Sustainable Agriculture focuses on defining, measuring and advancing the sustainability of food, fiber and fuel production

Conservation Fund



IAWA

Simplot.

Biotechnology Industry Organization

IOWA AGRICULTURE

What is Field to Market®?

- A collaborative stakeholder group
 - Producers, agribusinesses, food and retail companies, conservation associations, universities, and NRCS
 - Established as a 501(c)(3) with staff and headquarters in Washington, DC in 2014
- Identifying supply chain strategies to define, measure, and promote continuous improvement for agriculture
 - Addressing the challenge of increasing demand and limited resources
- Developing and implementing outcomes-based, science-based metrics and tools
 - Fieldprint Calculator®, a free, online tool to help growers analyze their operations and help the supply chain explain how food is produced
 - National Report on environmental and socioeconomic trends over time for U.S. commodity crops

How We Define Sustainable Agriculture

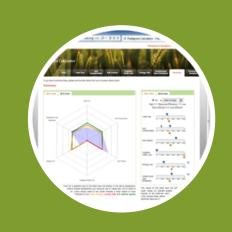
Meeting the needs of the present while improving the ability of future generations to meet their own needs by:

- Increasing productivity to meet future food and fiber demands
- Improving the environment
- Improving human health
- Improving the social and economic well-being of agricultural communities

Guiding Principles

- Engage the full supply chain including producers
- Focus on commodities crops with unique supply chains and traceability issues

- Science based
- Outcomes based
- Technology neutral
- Commitment to individual grower data privacy
- Measure broad-scale trends and field-scale outcomes



Deliverables: What We Are Doing

National indicators report:

Documentation of overall trends

Grower Fieldprints: Individual opportunities for continuous improvement

Public data and models Collaboratively developed Outcomes based

Supply chain projects:

Direct engagement
in continuous
improvement

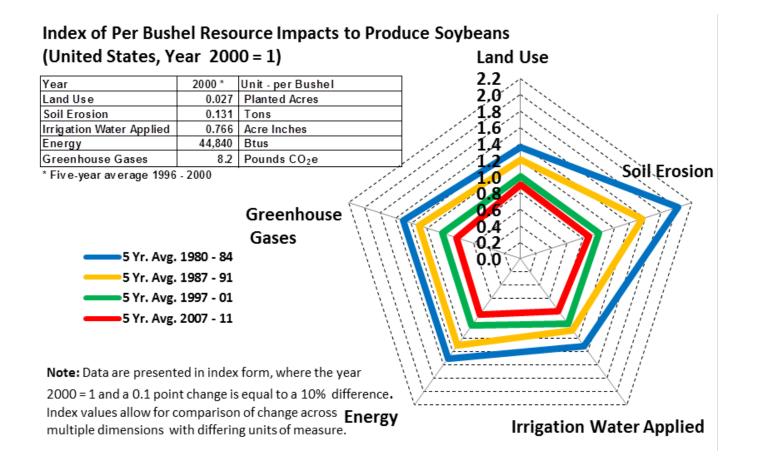
National Indicators Report: Objectives

- Analyze trends over time for environmental and socioeconomic sustainability indicators
- Establish a baseline against which to measure future improvements
- Create enabling conditions for an informed, multistakeholder discussion of sustainability
- > Advance an outcomes-based, science-based approach
- Provide broad-scale context for more local efforts

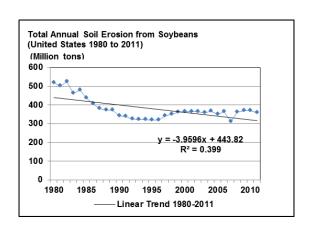
National Indicators Report

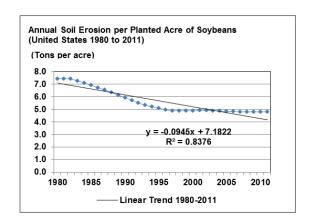
Criteria

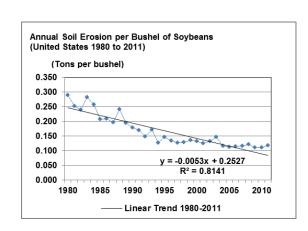
- Outcomes based
- Practice/technology neutral
- Transparent and credible science
- On-farm production outcomes within a grower's control


Data & Methods

- Crops: corn, cotton, potatoes, rice, soybeans, and wheat (2012)
- Indicators: land use, soil use, irrigation water, energy use, green house gas emissions in socio-economic added in 2012
- Analyzed publicly available data, 1980-2011;
 U.S. national-scale indicators
- Peer reviewed


Summary Results: Environmental Indicators


- Resource use/impact <u>per unit of production</u> ("efficiency")
 - Improvement for all six crops on all five environmental indicators
 - Driven in part by improvements in yield
 - Helps track resource uses vs. production/demand concerns
- Total resource use/impact
 - Variability across crops and indicators (increases, decreases)
 - Driven in part by overall increases or decreases in production


Sample Results: Resources per bushel – Soybeans

A Closer Look: Soybean Results – Soil Erosion

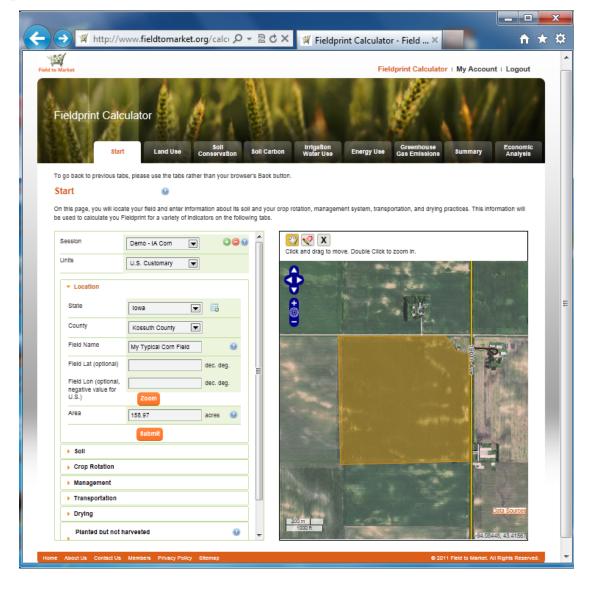
TOTAL

PER ACRE

PER BUSHEL

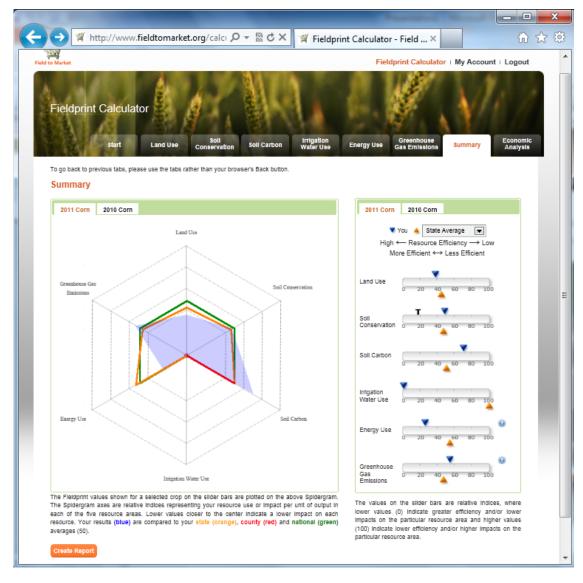
- Total soil erosion decreased over most of the study period, but has increased more recently (similar for corn)
- Per acre soil erosion decreased during first half of study period, then leveled off (similar for corn, cotton, and wheat)

What is the Fieldprint Calculator?


- An online education tool for row crop farmers that indexes their agronomics and practices to a Fieldprint
- Helps growers evaluate their farming decisions and compare their sustainability performance
 - In the areas of:
 - Land use
 - Soil conservation
 - Soil carbon
 - Water use
 - Energy use
 - Greenhouse gas emissions
 - Water Quality
 - Biodiversity (in development)

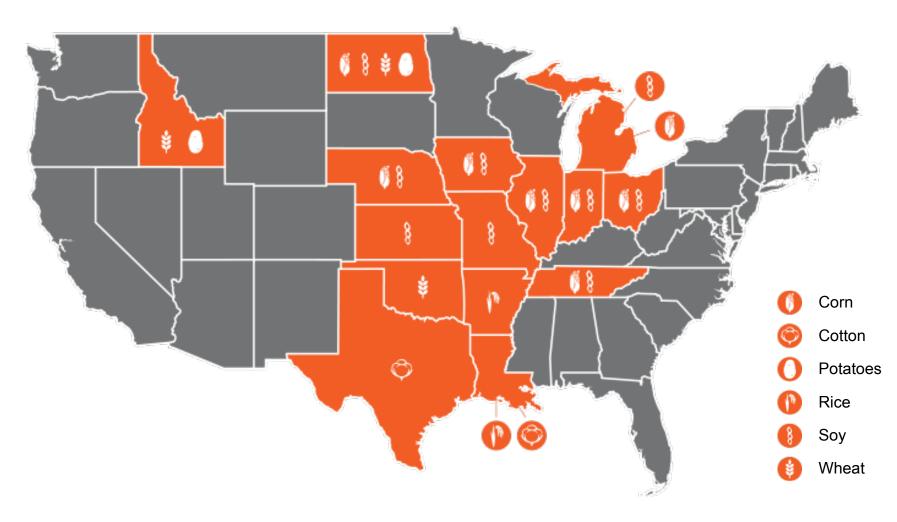
– Comparing against:

- Their own fields
- Their own performance over time
- County, state and national averages



Measuring at the Field Level

Fieldprint Summary



Fieldprint Projects

- Demonstrate use of calculator on the ground to test utility at the grower level and through the supply chain
- Engage farmers across geographies, crops, and supply chains
- Sponsors include grower organizations, supply chain companies, conservation organizations, and NRCS

Field to Market's Fieldprint Projects

Mackinaw Watershed Fieldprint Project

Location: McLean County, Lake Bloomington and Evergreen Lake

Watersheds, IL

Timeline: 2013-2015

Acres: 3,200

Growers: 20

Crops: Corn, Soy

Field to Market Sponsors:

Project Partners:

BCS, LLC (certified crop consultants); McLean County Soil and Water Conservation District; NRCS; The City of Bloomington; Walton Family Foundation

Goals and Objectives

- Work to involve the majority of the growers in the Decatur Sourcing Area in a continuous improvement program by 2020.
- Create a scalable model and implement the model in other parts of the Mississippi River Basin.
- Through economically viable improvements in nutrient use efficiency and soil health, contribute to water quality improvements locally and regionally and reduce greenhouse gas emissions from farming.

Snake River Valley Fieldprint Project

Location: Snake River Valley, ID

Timeline: 2009-2015

Acres: 10,000

Growers: 30

Crops: Wheat, Potatoes, Sugar Beets,

Barley

Field to Market Sponsors:

Project Partners:

Thresher Wheat, Miller Coors

Goals and Objectives

- Integrate crop production output data with Field to Market metrics across the full crop rotation
- Create a baseline from which improvements are continuously measured
- Develop effective farm management practices to drive improvements
- Generate actionable information to increase resource management and gain efficiencies while retaining and improving farm profitability

The Future: FTM's Three Basic Functions

- 1. Benchmarking and data collection
- Identifying opportunities for continuous improvement by leveraging existing tools/programs/initiatives
- 3. Aggregating information and enabling supply chain sustainability claims

Program Expansion

- New headquarters and staff in Washington, DC will oversee licensing of FTM assets
- Technology development key to exponential growth in Fieldprint Calculator participation
 - Interface with existing farm management and recordkeeping programs to reduce duplicate data entry
- Participation in ISEAL is shaping program verification and enabling sourcing claims
- Established goal of engaging 20% of US cropland by 2020

Two Phase Program Design

- Phase One: 2014 2015
 - Development of APIs & license agreements for Fieldprint Calculator integration with other tools/platforms
 - Development of protocols for linking to continuous improvement programs / conservation resources / technical assistance
 - FTM supporting "Participation" claims
- Phase Two: 2016 Beyond
 - Updated metrics & algorithms (FPC 3.0)
 - Integration with a greater number of tools/platforms
 - Established partnerships for continuous improvement
 - FTM supporting "Measurement" and "Impact" claims

Workgroups

- Verification and claims: Continue to use ISEAL guidance to develop a protocol for the FTM program
- Goals: Provide further clarity and recommendations for collective near-term, mid-term and long-term goals
- Metrics: Identify which metrics need to be updated, and possible new metrics and process and timeline
- Technology: Fieldprint Calculator maintenance, including integration of new benchmarks, crops, and metrics. Review integration/coordination with other platforms.
- **Continuous improvement**: Establish protocols for continuous improvement options, including partnerships and reporting

Key Objectives in 2015

- Updating our metrics to incorporate newly available science
 - Greenhouse gases
 - Water use and water quality
 - Soil health
- Harmonizing metrics with aligned programs and initiatives
- Preparing for rollout of version 3.0 of the Fieldprint Calculator
 - Updated user interface
 - Integration into other farm management software through an API
- Developing partnerships for continuous improvement
 - Sustainability curriculum for CCAs, etc.
- Establishing verification protocols for sustainable sourcing claims
- Membership expansion to strengthen downstream pull

Value of the Field to Market Approach

- Food and retail companies can access aggregated data in a pre-competitive fashion to make sustainable sourcing claims.
- <u>Agribusinesses</u> have a business opportunity to provide relevant decision support tools, technologies, programs and initiatives to growers.

Value of the Field to Market Approach

- Grain buyers can report the sustainability of their sourcing areas through a single platform rather than responding to multiple, competing surveys that may not have the same degree of supply chain support or recognition.
- Conservation organizations have full confidence in a sustainability framework that can become the focal point of their agricultural work and goals for production and supply chain sustainability.

Value of the Field to Market approach

- <u>Farmers</u> can evaluate their current footprint and connect with tools, technologies, programs and initiatives that will facilitate continuous improvement within their operations.
- Growers can benefit from an outcomes-based, technology neutral sustainability platform that will help ensure market access while reducing or eliminating a proliferation of supply chain surveys.
- <u>Commodity Organizations</u> have opportunities to partner with the agricultural supply chain in communicating sustainability messages to the general public.

Thank You

For More Information visit fieldtomarket.org or follow @FieldtoMarket on Twitter.

bhickman@fieldtomarket.org_